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Statistical model checking is an analysis method that circumvents the state space explosion problem
in model-based verification by combining probabilistic simulation with statistical methods that
provide clear error bounds. As a simulation-based technique, it can only provide sound results if
the underlying model is a stochastic process. In verification, however, models are usually variations
of nondeterministic transition systems. The notion of confluence allows the reduction of such
transition systems in classical model checking by removing spurious nondeterministic choices. In this
presentation, we show that confluence can be adapted to detect and discard such choices on-the-fly
during simulation, thus extending the applicability of statistical model checking to a subclass of
Markov decision processes. In contrast to previous approaches that use partial order reduction, the
confluence-based technique can handle additional kinds of nondeterminism. In particular, it is not
restricted to interleavings. We evaluate our approach, which is implemented as part of the modes
simulator for the MODEST modelling language, on a set of examples that highlight its strengths and
limitations and show the improvements compared to the partial order-based method.

1 Introduction

Traditional and probabilistic model checking have grown to be useful techniques for finding inconsistencies
in designs and computing quantitative aspects of systems and protocols. However, model checking is
subject to the state space explosion problem, with probabilistic model checking being particularly affected
due to its additional numerical complexity. Several techniques have been introduced to stretch the limits
of model checking while preserving its basic nature of performing state space exploration to obtain results
that unconditionally, certainly hold for the entire state space. Two of them, partial order reduction (POR)
and confluence reduction, work by selecting a subset of the transitions of a model—and thus a subset of
the reachable states—in a way that ensures that the reduced system is equivalent to the complete system.
POR was first generalised to the probabilistic domain preserving linear time properties [2, 6], with a later
extension to preserve branching time properties [1]. Confluence reduction was generalised in [8, 14],
preserving branching time properties.

A much different approach for probabilistic models is statistical model checking (SMC) [11, 13, 15,
16, 17]: Instead of exploring—and storing in memory—the entire state space, or even a reduced version
of it, simulation is used to generate traces through the state space. This comes at constant memory usage
and thus circumvents state space explosion entirely, but cannot deliver results that hold with absolute
certainty. Statistical methods such as sequential hypothesis testing are then used to make sure that the
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probability of returning the wrong result is below a certain threshold. As a simulation-based approach,
however, SMC is limited to fully stochastic models such as Markov chains [9].

Previously, an approach based on POR was presented [3] to extend SMC and simulation to the
nondeterministic model of Markov decision processes (MDPs). In that approach, simulation proceeds as
usual until a nondeterministic choice is encountered; at that point, an on-the-fly check is performed to
find a singleton subset of the available transitions that satisfies the ample set conditions of probabilistic
POR [2, 6]. If such an ample set is found, simulation can continue that way with the guarantee that
ignoring the other transitions does not affect the verification results, i.e., the nondeterminism was spurious.
Yet, the ample set conditions are based on the notion of independence of actions, which can in practice
only feasibly be checked on a symbolic/syntactic level (using conditions such as J1 and J2 in [3]). This
limits the approach to resolve spurious nondeterminism only when it results from the interleaving of
behaviours of concurrently executing (deterministic) components.

2 Approach

In this presentation, we present as an alternative to use confluence reduction, which has recently been
shown theoretically to be more powerful than branching time POR [8]. It is absolutely vital for the search
for a valid singleton subset to succeed in the approach discussed above: one choice that cannot be resolved
means that the entire analysis fails and SMC cannot safely be applied to the given model at all. Therefore,
any additional reduction power is highly welcome. Furthermore, in practice, confluence reduction is
easily implemented on the level of the concrete state space alone, without any need to go back to the
symbolic/syntactic level for an independence check. It thus allows even spurious nondeterminism that is
internal to components to be ignored during simulation.

Our work consists of three main contributions:

1. Since simulation works with a fully composed, closed system, we can relax the definition of
confluence with respect to action labels compared to [8]. We thus achieve more reduction/detection
power at no computational cost; yet, we have proven that this adapted notion of confluence still
preserves PCTL∗\X formulae.

2. We introduce an algorithm for detecting our new notion of probabilistic confluence on a concrete
state space and state its correctness. The algorithm is inspired by, but different from, the one given
in [7]; in particular, it does not require initial knowledge of the entire state space and can therefore
be used on-the-fly during simulation.

3. We evaluate the new confluence-based approach to SMC on a set of three representative examples
using our implementation within the modes statistical model checker [4] for the MODEST modelling
language [5]. We clearly identify its strengths and limitations. Since the previous POR-based
approach is also implemented in modes, we compare the two in terms of reduction power and, on
the one case that can actually be handled by the POR-based implementation as well, performance.

2.1 Related work

Aside from [3] and an approach that focuses on planning problems and infinite-state models [12], the
only other solution to the problem of nondeterminism in SMC that we are aware of is recent work by
Henriques et al. [10]. They use reinforcement learning, a technique from artificial intelligence, to actually
learn the resolutions of nondeterminism (by memoryless schedulers) that maximise probabilities for a
given bounded LTL property. While this allows SMC for models with arbitrary nondeterministic choices
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Table 1: SMC approaches for nondeterministic models (with n states)
approach nondeterminism probabilities memory error bounds

POR-based [3] spurious interleavings max = min s� n unchanged

confluence-based spurious max = min s� n unchanged

learning [10] any max only s→ n convergence

(not only spurious ones), scheduling decisions need to be stored for every explored state. Memory usage
can thus be as in traditional model checking, but is highly dependent on the structure of the model and the
learning process. With increasing number of runs of the algorithm, the answer it returns will converge to
the actual result, but definite error probabilities are not given. The approaches based on confluence and
POR do not introduce any additional overapproximation and thus have no influence on the usual error
bounds of SMC. Table 1 gives a condensed overview of the three approaches (where we measure memory
usage in terms of the maximal number of states s stored at any time).

3 Results and Conclusions

We defined a more liberal variant of probabilistic confluence, tailored for the core simulation step of
statistical model checking. It has more reduction potential than a previous variant at no extra computational
cost, but still preserves PCTL∗\X . We provided a provably correct algorithm for on-the-fly detection of
confluence during simulation and implemented this algorithm in the modes SMC tool. Compared to
the previous approach based on partial order reduction [3], the use of confluence allows new kinds of
nondeterministic choices to be handled, in particular lifting the limitation to spurious interleavings. In
fact, for two of the three examples we will present, SMC is only possible using the new confluence-based
technique, showing the additional power to be relevant. In terms of performance, it is somewhat faster
than the POR-based approach, but the impact relative to (unsound) simulation using an arbitrary scheduler
largely depends on the amount of lookahead that needs to be performed, for both approaches. Again, on
two of our examples, the impact was moderate and should in general be acceptable to obtain trustworthy
results. Most importantly, the memory overhead is negligible and one of the central advantages of SMC
over traditional model checking is thus retained.

As confluence preserves branching time properties, it cannot handle the interleaving of probabilistic
choices. Although these can often easily be avoided, for some models POR might work while confluence
does not. Hence, neither of the techniques subsumes the other, and it is best to combine them: if one
cannot be used to resolve a nondeterministic choice, the SMC algorithm can still try to apply the other.
Implementing this combination is trivial and yields a technique that handles the union of what confluence
and POR can deal with.

An obvious direction for future work is to compare our techniques to the learning-based approach of
Henriques et al. [10] on models where all three methods are applicable. Their approach is fundament-
ally different in so many aspects that a fair and complete comparison would exceed the scope of this
presentation.
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